Universality of a non-classical integral quadratic form over Q ( \sqrt 5 )

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NON - CLASSICAL QUADRATIC FORM OF HESSIAN DISCRIMINANT 4 IS UNIVERSAL OVER Q ( p 5 )

An adaptation of a quaternionic proof of the Sum of Four Squares Theorem over Q( p 5) is used to show that a particular non-classical quaternary quadratic form is universal.

متن کامل

Non-Classical Hyperplanes of DW(5, q)

The hyperplanes of the symplectic dual polar space DW (5, q) arising from embedding, the so-called classical hyperplanes of DW (5, q), have been determined earlier in the literature. In the present paper, we classify non-classical hyperplanes of DW (5, q). If q is even, then we prove that every such hyperplane is the extension of a non-classical ovoid of a quad of DW (5, q). If q is odd, then w...

متن کامل

Codes over F4, Jacobi forms and Hilbert-Siegel modular forms over Q(sqrt(5))

We study codes over a finite field F4. We relate self-dual codes over F4 to real 5-modular lattices and to self-dual codes over F2 via a Gray map. We construct Jacobi forms over Q( √ 5) from the complete weight enumerators of self-dual codes over F4. Furthermore, we relate Hilbert–Siegel forms to the joint weight enumerators of self-dual codes over F4. © 2004 Elsevier Ltd. All rights reserved.

متن کامل

Small Zeros of Quadratic Forms over Q

Let N ≥ 2 be an integer, F a quadratic form in N variables over Q, and Z ⊆ Q N an L-dimensional subspace, 1 ≤ L ≤ N . We prove the existence of a small-height maximal totally isotropic subspace of the bilinear space (Z, F ). This provides an analogue over Q of a well-known theorem of Vaaler proved over number fields. We use our result to prove an effective version of Witt decomposition for a bi...

متن کامل

Parametrizing over Z integral values of polynomials over Q

Given a polynomial f ∈ Q[X] such that f(Z) ⊂ Z, we investigate whether the set f(Z) can be parametrized by a multivariate polynomial with integer coefficients, that is, the existence of g ∈ Z[X1, . . . , Xm] such that f(Z) = g(Z). We offer a necessary and sufficient condition on f for this to be possible. In particular it turns out that some power of 2 is a common denominator of the coefficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2009

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa136-3-3